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Abstract 

Building on previous works by Lord and Ogasawara for dichotomous items, this paper 

proposes a derivation for the asymptotic standard errors of true score equating involving 

polytomous items for non-equivalent groups of examinees.   The proposed formula were 

validated using concurrent calibration equating and mean-mean equating of simulated 

bootstrap samples. 
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Introduction 

Formula for asymptotic standard errors of Item Response Theory (IRT) true score 

equating for common item non-equivalent groups were first derived by Lord (1982) for the 

three parameter logistic (3PL) model intended for dichotomous items.  Using the same 3PL 

model, Ogasawara (2000, 2001a) presented and derived asymptotic standard errors formulae 

for some of the common equating methods.  These formula could be used in placed of other 

methods of estimating standard of errors like bootstrapping methods.  Building on their 

approaches, this paper proposes a derivation for standard errors of IRT true score equating 

using Master’s (1982) Partial Credit Model (PCM) and Muraki’s (1992) Generalised Partial 

Credit Model (GPCM), for non-equivalent groups of examinees.     The approach is intended 

for item parameters estimated using the marginal maximum likelihood (MMLE) method, 

where ability distributions are assumed to be known.   

This study is motivated by the fact that few studies of asymptotic standard errors for 

polytomous exists.  Many non-analytic equating standard errors studies have been conducted 

using the common-item non-equivalent group design, mostly involving dichotomous items.  

A few studies involving polytomous items make use of random group design (Harris, Welch 

& Wang, 1994) or bootstrapping methods.  In the book by Kolen and Brennan (Kolen and 

Brennan, 2004, page 250), it was noted that: 

“Computer subroutines for calculating standard errors of some IRT equating methods 

are available from Ogasawara (2003b). Also, standard errors of equating have not 

been derived for polytomous IRT models.  Additional empirical works is needed to 

assess the accuracy of the IRT standard errors that have been derived.” 

As polytomous items are often used in testing situations, it is important to understand 

how sampling errors affects the equated scores.  Whilst parametric and non-parametric 

bootstrap methods (Efron and Tibshirani, 1993) exists to estimate these standard errors, it 

may be time consuming to conduct such studies, which may involve 100-1000 simulated 

datasets, and performing equating of these datasets over 100-1000 times.   Using asymptotic 

standard error formula, one is able to estimate the standard error from the data used for 

equating, without the need to do any simulations.   Lord (1982) first introduced the concept of 

asymptotic standard error for true score equating of dichotomous items using the 3PL model 

to estimate sampling error in the equated score, given a particular ability estimate.  The study 

involved external anchor tests for non-equivalent groups with equating performed via a chain.  

Ogasawara (2001a), also using the 3PL model, further derived a set of formulae for three 

types of equating methods. The first type of equating methods involves chained equating 

where true scores of two tests are equated without using any equating coefficient.  The 

second type of equating methods involves the use of IRT equating coefficients, derived from 

moments or characteristic curves of common items. These methods include the ‘mean-mean’ 

method, the ‘mean-standard deviation’ method, and the characteristic curve method.  Finally, 

the third type of equating makes use of concurrent calibration of the two tests to be equated.   
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Instead of the 3PL model used for dichotomous items, this study adapts the 

derivations of Ogasawara (2000, 2001a) to formulate the corresponding formula for 

polytomous items, using Master’s (1982) Partial Credit Model (PCM) and Muraki’s (1992) 

Generalised Partial Credit Model (GPCM).  It should be noted in practice, model’s 

assumptions may be violated to some extent and the outcomes of using a model should be 

examined for its robustness. The derived formula are then verified using randomly generated 

data, involving the mean-mean and concurrent calibration equating methods.  These two 

equating methods were selected for a start, as they were relatively easier to program.  Also, it 

makes use of IRT true score in the equating, which is sometimes used in place of number 

correct score in recommending cuts scores.  This is different from another class of equating 

involving observed scores (Kolen & Brennan, 2004). 

 

Asymptotic Standard Errors for True Score Equating of Polytomous Items Involving 

Equating Coefficients 

Mean-Mean Equating of Tests Modelled Using the Partial Credit Model (PCM) 

This section proposes the formula needed to compute the asymptotic standard error 

for the mean-mean equating of non-equivalent groups of examinees.  To simplify the 

presentation, the asymptotic standard error formulae using the PCM model is derived first, 

before presenting extensions to the GPCM.   To facilitate comparison with Ogasawara’s 

(2001a) paper, similar notations are used in this paper.  To reiterate, suppose two groups of 

examinees, Groups 1 and 2, take tests U and V as follows: 

Examinee Group 1:  Test U:  (subtest X subtest R N.A.           ) 

Examinee Group 2:  Test V:  (N.A.  subtest R subtest Y    ) 

Subtest R comprises the items common to both groups of examinees, and the 

estimated item parameters of these items are used to equate the two tests.   For the mean-

mean equating method, Test U and Test V are calibrated separately in two calibration runs, 

giving rise to two sets of item parameter estimates.   

To simplify the presentation, let us consider that all the subtests involve only 

polytomous items with three categories of number correct scores (t=0,1 or 2), assuming that 

category 1 is assigned a score of 0, category 2 is assigned a score of 1 and so on.  This means 

that each item has 3 categories and two item threshold parameters (denoted by bkgh).   

Suppose an examinee with ability θ attempted the gth item of the kth subtest.   For Master’s 

(1982) PCM, the probability function of a getting a score of t is given as follows: 

  0
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For subtests X and R1, the probability function is in the form in (1) but for subtests R2 

and Y the function takes on a slightly different form to cater to the equating coefficient: 

  0

2

0 0

exp[ ( )]

( )

exp[ ( )]

t

kgh

h
kgt t

kgh

t h

b B

P

b B









 

 
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 



 
. (2) 

Here, B is the equating coefficient for the mean-mean method, to put the two tests on the 

same scale.  Using the thresholds for the common items (i.e. subtest R), we have  

1 2R gh R ghb b B  .      (3) 

To perform true score equating, we need the formula for the true scores of both tests.  Using 

usual statistical formula for expected scores, the following equations give the true scores of 

tests U and V respectively: 

  
1

1

2 2

1 1 1 1

( ) ( )
RX

nn

Xgt R gt

g t g t

tP tP  
   

    (4)

   

  
2

2

2 2

1 1 1 1

( ) ( )
R Y

n n

R gt Ygt

g t g t

tP tP  
   

    (5) 

The terms involving the summation of t from 1 to 2 in these formula stem from using the 

elementary way of computing expected true scores for polytomous items, by summing over 

the terms for the three possible scores. 

To work out the asymptotic standard error of ̂ , the delta method is used.  For true 

score equating involving coefficient, we need the estimates of both the item threshold 

parameters (i.e. ̂ ) and the equating coefficients (i.e. B̂ ).  The item threshold parameter 

estimates may be obtained from the calibration program, whilst the equating coefficient is 

computed from these item parameter estimates using only the common items.  Suppose ̂  

and B̂  are collectively denoted by the vector ˆ ˆˆ( , )B   , then the asymptotic variance of ̂  

is obtained using the delta method as follows (see Ogasawara, 2001a): 

 ˆˆvar( ) cov( )a a
 

 
 

 


 
  (6) 

The derivations of the terms on the right-hand side (RHS) of (6) are needed.  The first task is 

to derive 







, the derivatives of the true score η with respect to the item parameters, across 

all the tests (i.e. Y, R2, R1 and X).  The following derivatives are required which are adapted 

from the corresponding equations in Ogasawara’s (2001a) paper, with additional summations 
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to cater to the categories of the polytomous items.  The partial derivatives of   with respect 

to parameters in subtests Y and R2 are: 

 
2

1

( )Ygt

tYgh Ygh

P
t



 




 
  (7) 

  2

2 2

2

1

( )R gt

tR gh R gh

P
t



 




 
  (8) 

For partial derivatives of η with respect to parameters in subtest X, we have:   

 
Xgh Xgh

  

  

  


  
                    (9) 

with   
2

2

( , ) 1 1

( )kn
Ygt

k R Y g t

P
t



   
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 
    (10) 

and                                         

1
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1

2
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[ ( ) / ]
k
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t

n

Xgh
kgt

k X R g t
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 



 



  

    



 



 
 ,                                    (11) 

where (11) makes use of implicit functions.  Similarly for subtest R1, 

 

1 1R gh R gh

  

  

  


  
, (12) 

where similar expression as (11) can be derived for 

1R gh








on the RHS of (12) 

Aside from the partial derivatives of η with respect to the item parameters, we also 

need the partial derivative with respect to the equating coefficient B used in mean-mean 

equating.  The derivative needed is: 

 
2

2

( , ) 1 1

( )kn
kgt

k R Y g t

P
t

B B



  




 
    (13) 

To work out equations (7)-(12), we could inspect the terms on the right hand side of 

these equations.   It can be seen two groups of partial derivatives are needed - the derivative 

of Pkgt with respect to θ (e.g. 
( )YgtP 






) and the derivative of Pkgt with respect to kgh   

(e.g. 
( )Ygt

Ygh

P 






).  These could be derived using the quotient rule for differentiation, as the 

probability functions in (1) and (2) are expressed in quotient form.   This will be illustrated in 

the next few paragraphs. 
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Let us consider subtests X and R1.  To simply the presentation, we introduce 

shorthand notations 11 exp( )kge b   and 22 exp( )kge b  .  Then, 

for t=0, 
0

1
( )

1 1 1 2
kgP

e e e
 

 
,   (14a) 

for t=1, 1

1
( )

1 1 1 2
kg

e
P

e e e
 

 
,   (14b) 

for t=2, 
2

1 2
( )

1 1 1 2
kg

e e
P

e e e
 

 
.              (14c) 

We need not be concerned with derivatives for t=0 as they do not contribute to the 

computation of true scores.  Using quotient rule for differentiation, the following derivatives 

are derived: 

For t=1, 
1

2

( ) 1(1 1 2)

(1 1 1 2)

kgP e e e

e e e





 


  
 , 

1
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1
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(1 1 1 2)
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b e e e

 


  
,

2
1

2

2

( ) 1 2

(1 1 1 2)
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P e e

b e e e




  
. 

(15a-c) 

 For t=2, 
2

2

( ) 1 2(2 1)
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kgP e e e
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 
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1
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 

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,

2
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2
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(1 1 1 2)
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P e e e

b e e e

  


  
. 

  (16a-c) 

It is reiterated that these partial derivative are intended for our set-up of using three categories 

for the polytomous items, hence there are two partial derivatives required for the two 

threshold parameters (i.e. bkg1 and bkg2).   The partial derivatives for adjacent scores are 

related in a sequential manner.  For instance, equations (16) can be derived by making use of 

results derived in (15), by using the product rule for differentiation and the relationship 

between (14b) and (14c), where 2 1( ) ( 2) ( )kg kgP e P  .   

Using elementary calculus, we can see that these equations (i.e. (15a-c) and (16a-c)) 

hold for subtests Y and R2 too, where the shorthand notations become e1= 1exp( )kgb B    

and e2= 2exp( )kgb B   . 

We now turn to elaborating the partial derivatives for the equating coefficient B, by 

inspecting the terms on the RHS of equation (13).  No extra derivation work is needed, as we 

note the following from studying equation (2): 

1 1( ) ( )kg kgP P

B

 



 
 

 
 and 

2 2( ) ( )kg kgP P

B

 



 
 

 
,             (17) 

where the terms  
1( )kgP 


 and 

2 ( )kgP 


 are already derived in (15a) and (16a). 
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We have already dealt with the term 







on the RHS of (6), with the derivation of the 

remaining ˆcov( )a   elaborated here.  The next few equations are adapted from Ogasawara’s 

(2001a) derivations and are presented here for completeness.   Now since ˆ ˆˆ( , )B   , the 

covariance of ̂ takes the form of a partitioned matrix: 

 
ˆˆ ˆcov( ) cov( ; )ˆcov( )

ˆ ˆˆcov( ; ) cov( )

a a B
a

a B a B

 




 
  
  

  (18) 

where  ˆ ˆ ˆcov( ; ) cov( )
B

a B a 



 


 (19)  

and  ˆ ˆcov( ) cov( )
B B

a B a 
 

 


 
.                                            (20) 

Note that equation (20) also makes use of the delta method, as the coefficient B is a function 

of ̂  in the mean-mean equating method. 

Inspecting the RHS of (19) and (20), we note that the term 
B






 is required.  For the  

mean-mean method, the non-zero derivatives for the p common items are: 

 

1 11 2

1

2R j R j

B B

b b p

 
 

 
  and  

2 21 2

1
1,..,

2R j R j

B B
j p

b b p

 
   

 
.  (21) 

Compared to Ogasawara’s (2000) equations, an additional number ‘2’ in the denominator is 

present, which corresponds to our assumption of two thresholds in each polytomous item.  

With that derivation, we have all the necessary equations to work out the asymptotic standard 

error for the true score equating of items, using PCM and mean-mean equating.  Note that 

whilst the above derivations assume three categories in each polytomous item, it can easily be 

generalised to items with more categories, or a test with a mix of items with different number 

of categories.  The derivatives have to be adjusted using elementary calculus, depending on 

the number of categories in the items.  

Extension to the Concurrent Calibration Equating 

In the case of concurrent calibration equating, the formula are simpler, as there is no 

need to have the equating coefficient B .   In concurrent calibration equating, all item 

parameter estimates are on the same scale.   Unlike mean-mean equating which requires two 

separate calibrations, both tests U and V are calibrated together in a single run in concurrent 

calibration equating, after aligning the common items in the data matrix.  Hence all the 

derivations in the previous section involving B could be set to zero. 
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Extension to the Generalised Partial Credit Model (GPCM) 

The derivations in the preceding sections can be extended to equating involving 

Muraki’s (1992) GPCM.  Compared to the PCM model, it includes the additional item 

discrimination parameters kga .  The probability functions are: 

0
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  for subtests X and R1,            (22) 

and 
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   for subtests R2 and Y.          (23) 

Compared to equation (3), there are now two equating coefficients for the mean-mean 

method, namely A  and B where: 

1 1 2 2
( , ) ( / , )R gh R gh R gh R gha b a A Ab B                (24) 

Also, the shorthand notations in equations (14) are updated to e1= 1exp( ( ))kg kga b   for 

subtests X and R1, and e1= 1exp( ( ))
kg

kg

a
Ab B

A
   for subtests Y and R2 and so on.   For 

partial derivatives 
1( )kgP 






  and 

2 ( )kgP 






 corresponding to those in equations (15a) and 

(16a), an additional multiplier of kga (for subtests X and R1) or 
kga

A
 (for subtests Y and R2) is 

needed on the RHS of these equations, following rule for differentiation of exponential terms.  

Similarly for partial derivatives 
1
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
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2

2

( )kg

kg

P

b




 corresponding to 

those in equations (15b-c) and (16b-c), the additional multiplier of kga is needed for all 

subtests (i.e. X, R1, Y and R2).    

Unlike PCM, the partial derivatives involving kga for subtests X and R1 would also be 

needed: 

For t=1,  

2

1 1 2

2

1

( ) 1( ) 1 2( )
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P e b e e b
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For t=2,  
2 2 1
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The corresponding equations for subtests Y or R2 are: 

For t=1, 

2

1 1 2

2

1

( ) 1( ) 1 2( )
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                                    (27) 

For t=2,
2 12

2

2
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a A e e e
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 (28) 

Finally, in addition to (17), the additional partial derivatives with respect to A would be: 

1 1( ) ( )( )kg kgP PB

A A

 


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 

 
 and 

2 2( ) ( )( )kg kgP PB

A A

 



 
 

 
           (29) 

With slight adaptation to cater to polytomous items, Ogasawara’s (2000) derivations 

for mean-mean equating involving both A and B coefficients would also be needed.   

 

Verification of Formula Using Simulated Samples 

Method 

To verify the formula, simulation studies using samples derived from different 

polytomous models (i.e. PCM and GPCM), different equating methods (i.e. mean-mean and 

concurrent) and different sets of population item parameters were conducted.  As mentioned 

before, the two equating methods selected were the concurrent calibration equating and the 

mean-mean equating, as these methods are less complex to program.  The use of different 

sets of population item parameters (see Appendix A) was intended as additional checks to 

verify the formula.  Four possible combinations of studies were conducted – namely PCM & 

Mean-Mean Equating, PCM & Concurrent Equating, GPCM & Mean-Mean Equating and 

GPCM & Concurrent Equating.  A total of eight studies were conducted.  The item 

parameters for the first study in each combination were generated from the Normal(-0.5,1) 

and Normal(0.5,1) for the two threshold parameters, and the discrimination parameters (for 

GPCM studies only) were generated by adding 0.3 to random values generated from the 

Uniform distribution.  For the second study in each combination, the two thresholds were 

generated from the Normal(0,1) and Normal(1,1), and the discrimination parameters were 

generated in the same manner as the first study in each combination. 

The steps involved in each study are described as follows.  First, using the 26 

generated population item parameters, two artificial tests (Tests U and V) were created, each 

with 16 three-category items, with six common items between the two tests.  Second, using 

the population item parameters, a total of 200 parametric bootstrap samples were simulated to 

represent tests U and V, each with 1000 examinees’ responses.  For the PCM & Mean-Mean 

Equating study, the 1000 examinees’ abilities were simulated using random draws of values 

from the Normal(0,1) and Normal (0.5,1) for tests U and V respectively.  For GPCM & 

Mean-Mean Equating, the Normal(0,1) and Normal(0.5,1.2) were used to simulate the 

abilities, as GPCM allows for the modelling of the item discrimination parameters.   In the 
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case of studies involving the concurrent calibration method, examinees’ abilities were all 

drawn from the Normal(0,1) for both tests U and V.  The response of an examinee to an item 

was simulated by comparing the segments defined by cumulative score distribution of the 

polytomous item, with a random draw from the Uniform distribution.  In our example of 

three-category items, the cumulative score distribution divides the [0,1] probability space for 

a given ability into three segments – P(0 <= t < 1), P(1 <= t < 2) and P(t = 2).  Depending on 

the value of the random draw from the Uniform distribution and the segment it falls on, a 

score of 0, 1 or 2 was assigned as the response.   

Third, each simulated sample was calibrated using the NLMixed procedure (Sheu, 

Chen & Wang, 2005; Tuerlinckx & Wang, 2004) found in the SAS statistical package, 

assuming a 15 point quadrature for ability.   An example of the subroutine is shown in 

Appendix B.  The item parameters, as well as their variance-covariance matrix, could be 

produced in the SAS calibration and stored as outputs.  Using these outputs, the analytical 

asymptotic standard errors were derived using the formula.   

The empirical standard errors were also computed, which involved conducting 100 

equating for each study.  For the mean-mean equating method, the estimated parameters of 

the two tests were placed on the same scale using the difference in the mean threshold values 

of the six common items (i.e. 12 thresholds).   For the concurrent calibration method, as the 

simulated responses of both tests were calibrated in a single run of NLMixed, the estimated 

parameters of both tests were already on the same scale.  With parameters on the same scale, 

the equated scores ̂  in test V given true scores in test U could then be obtained, using the 

PCM or GPCM formula.  Finally, the empirical standard errors of equating were computed 

using the standard deviation of the equated scores ̂ , over the 100 pairs of simulated 

samples.   

For each study, the first 10 asymptotic standard errors (denoted by ASE in the figures, 

i.e. ASE1-ASE10) were computed and plotted against the empirical standard error (denoted 

by SIM), to evaluate if the ASEs are close to the SIM by inspecting the graphs.  In practice, 

only one ASE graph is possible as there is only one set of real data. 
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Results 

Figures 1a and 1b show the results for the PCM & Mean-Mean Equating studies.  The 

means of the equating coefficient B were 0.505 and 0.503 respectively, close to the expected 

value of 0.5.  These graphs compare the standard error obtained from the equating of 100 

pairs of simulated samples (SIM), and the asymptotic standard error obtained from the first 

10 simulated samples (ASE1-ASE10).  Figure 1a shows that the curves are close.  This is also 

the case for Figure 1b, where another set of population item parameters was used.  This 

supports the validity of the derived formula.  

Figures 2a and 2b show the results for the PCM & Concurrent Equating studies, using 

the same population item parameters as those in Figures 1a and 1b respectively (see Annex 

A).  Figure 2a or 2b shows that the ASE curves are close to those of SIMs, verifying the 

formula.   

Figures 3a and 3b show the results for the GPCM & Mean-Mean Equating studies.  

The means of the equating coefficients (A, B) were (0.524, 1.216) and (0.508, 1.197) 

respectively, close to the expected values of (0.5, 1.2).  The ASE curves tend to follow the 

shape of SIMs.  However, a greater deviation between ASEs and SIMs is observed here, 

compared to the corresponding results for PCM (see Figures 1a and 1b).  A greater variation 

amongst the ASEs is also detected.  Nonetheless, the similar shapes and closeness of the 

SIMs and ASE curves lend support to the validity of the formula. 

Figures 4a and 4b show the results for the GPCM & Concurrent Equating studies.  

These studies make use of the same item parameters as those in Figures 3a and 3b 

respectively.  The ASE curves are close to the SIM curves.  Compared to the GPCM & 

Mean-Mean Equating studies, the GPCM & Mean-Mean Equating (see Figures 3a-b) appears 

to give relatively the worse results. 
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Figures 1a-b:  Studies using PCM and Mean-Mean Equating.  Asymptotic Standard Errors 

derived from the first 10 sets of samples (ASE1-ASE10), compared with standard error 

derived from 200 bootstrap samples (SIM). 
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Figures 2a-b:  Studies using PCM and Concurrent Equating.  Asymptotic Standard Errors 

derived from the first 10 sets of samples (ASE1-ASE10), compared with standard error 

derived from 200 bootstrap samples (SIM).
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Figures 3a-b:  Studies using GPCM and Mean-Mean Equating.  Asymptotic Standard Errors 

derived from the first 10 sets of samples (ASE1-ASE10), compared with standard error 

derived from 200 bootstrap samples (SIM). 
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Figures 4a-b:  Studies using GPCM and Concurrent Equating.  Asymptotic Standard Errors 

derived from the first 10 sets of samples (ASE1-ASE10), compared with standard error 

derived from 200 bootstrap samples (SIM). 
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Discussion 

The proposed formula to compute the asymptotic standard errors for the GPCM and 

PCM were derived and verified in this paper.  Results are generally comparable between the 

empirically computed and analytically derived standard errors.  This is true for studies using 

the different models (i.e. GPCM or PCM), different equating methods (i.e. concurrent or 

mean-mean), and different population item parameters.  Amongst the studies in this paper, 

the GPCM & Mean-Mean Equating studies seem to produce relatively the worst results.  This 

could be due to the need to estimate more parameters (i.e. both item parameters and equating 

coefficients), compared to the other studies. 

The studies also demonstrated the possibility of using outputs from commercial 

software like SAS to compute asymptotic standard error for equating, which may be more 

accessible for some researchers, as the variance-covariance matrix is produced during the 

calibration.   

There is scope for more studies, to lend more support to the accuracy of the formula.  

More studies could be conducted using other equating methods (e.g. characteristic curves 

methods), different population item parameters, or different number of quadrature points, as 

well as related studies of bias in equating.  The proposed solution and formula using different 

commercial software could also be attempted, to determine if these observations are 

replicable.  Finally, the approach to derive the formula for asymptotic standard errors 

presented in this paper could be extended to other  polytomous item response theory models 

like Samejima’s Graded Response model or Andrich’s Rating Scale model. 
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Appendix A 

Population Item Parameters Used to Simulate Examinees’ Responses for the Various 

Studies 

1
st
 Study of Each Combination  2

nd
 Study of Each Combination 

GPCM  & Mean/Mean Equating 1 

GPCM  & Concurrent Equating 1 
 

GPCM  & Mean/Mean Equating 2 

GPCM  & Concurrent Equating 2 

 Included Included Included  Included Included Included 

   

PCM  & Mean/Mean Equating 1 

PCM  & Concurrent Equating 1 
 

PCM  & Mean/Mean Equating 2 

PCM  & Concurrent Equating 2 

 Included Included Excluded  Included Included Excluded 

        

Test R  

(common items) 
b1 b2 a  b1 b2 a 

1 1.33806 3.08258 0.79763  0.5789 1.58495 1.01307 

2 0.21331 1.02245 1.29233  -1.68365 1.55287 0.76445 

3 -0.62052 0.86036 0.48273  0.58717 0.57203 0.95577 

4 0.57923 1.05657 0.53858  0.42444 0.92405 0.54243 

5 1.4392 0.29652 0.6463  -0.94425 -0.20737 0.33482 

6 0.82241 -2.01982 1.19491  -0.42301 1.18193 0.64467 

Test X        

7 -0.24341 1.26142 0.98801  1.04386 0.88357 0.8774 

8 0.0251 -1.05536 1.29273  1.0179 1.3931 0.49124 

9 -0.81588 0.73243 0.72398  1.13689 1.48594 0.38911 

10 0.44013 0.50921 1.16191  -2.36292 0.96759 1.24919 

11 -1.3015 0.5786 0.32351  0.17206 0.50831 0.85046 

12 0.09979 2.97816 1.12001  1.44349 1.20696 0.83222 

13 -0.28374 -1.44705 0.85695  -1.0292 3.46612 1.05332 

14 -1.90943 2.09595 0.7641  0.90394 0.81524 0.53393 

15 -1.24689 0.0966 0.33429  0.34143 2.17371 0.4313 

16 -1.14301 1.19819 1.21465  -0.02732 1.49808 0.73662 

Test Y        

17 -0.3626 1.1303 0.42531  1.76616 1.9649 1.27168 

18 -0.05881 0.67114 0.37231  -1.15887 1.41843 0.60408 

19 -1.62947 1.0397 0.48049  0.07449 1.70189 0.46944 

20 -2.96021 0.30297 0.98042  0.89841 -0.21586 0.94881 

21 -0.01764 0.29818 0.46142  1.90587 1.36124 0.65042 

22 -0.1051 0.21991 0.72959  -2.45609 -0.03249 0.5422 

23 -0.72166 -0.45564 1.11316  1.44083 1.13126 0.86995 

24 0.57653 0.95833 1.29675  -0.31688 1.2674 0.44457 

25 -0.22971 -1.49936 1.1765  -1.23284 0.88399 0.69617 

26 -1.84183 1.34844 0.49588  -0.30707 1.76409 1.0011 
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Appendix B 

Using SAS NLMixed for the Generalised Partial Credit Model 

 
* Call in simulated dataset 1 
DATA ff1; 
  SET IN.simdata1; 
  CASE=_N_; 
  KEEP CASE Q1-Q16; 
RUN; 
 
* Import categorical item data; 
DATA F1; SET ff1; 
ARRAY aQ(16) Q1-Q16; 
DO i=1 TO 16; 
item=i; Q=aQ(i); OUTPUT; 
END; 
RUN; 
 
* Create dummy variables; 
DATA F1; SET F1; 
ARRAY dummy (16) i1-i16; 
DO d=1 TO 16; 
IF item=d THEN dummy(d)=1; ELSE dummy(d)=0; 
END; 
DROP i d Q1-Q16; 
RUN; 
 
PROC NLMIXED DATA=F1 METHOD=GAUSS TECHNIQUE=QUANEW QPOINTS=15 COV NOAD; 
 
* All model parameters must be listed here with start values; 
PARMS d101-d116=-1 d201-d216=0 a01-a16=2; 
 
d1 = d101*i1 + d102*i2 + d103*i3 + d104*i4 + d105*i5 + d106*i6 + d107*i7 + d108*i8 + d109*i9 + 
d110*i10 + d111*i11 + d112*i12 + d113*i13 + d114*i14 + d115*i15 + d116*i16; 
 
d2 = d201*i1 + d202*i2 + d203*i3 + d204*i4 + d205*i5 + d206*i6 + d207*i7 + d208*i8 + d209*i9 + 
d210*i10 + d211*i11 + d212*i12 + d213*i13 + d214*i14 + d215*i15 + d216*i16; 
 
a = a01*i1 + a02*i2 + a03*i3 + a04*i4 + a05*i5 + a06*i6 + a07*i7 + a08*i8 + a09*i9 + a10*i10 + 
a11*i11+ a12*i12 + a13*i13 + a14*i14 + a15*i15 + a16*i16 ; 
 
eta1 = exp((a)*((theta-d1))); 
eta2 = exp((a)*((theta-d1)+(theta-d2))); 
* Probabilities for each category estimated; 
IF Q=0 THEN p = 1 / (1 + eta1 + eta2 ); 
ELSE IF Q=1 THEN p = eta1 / (1 + eta1 + eta2); 
ELSE IF Q=2 THEN p = eta2 / (1 + eta1 + eta2); 
ll = log(p); 
MODEL Q ~ general(ll); 
 
RANDOM theta ~ normal(0,1) SUBJECT = case ; 
 
* All item parameter estimates and the variance-covariance matrix saved to named datasets; 
ODS OUTPUT ParameterEstimates=OUT.item_parameter; 
ODS OUTPUT CovMatParmEst=OUT.variance_cov; 
RUN; 
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